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An analytical method for the vibration analysis of unidirectional and multi-
branched torsional systems is investigated. In the study, an alternative power-
¯ow graph model and the model operation technology are introduced for
constructing the analytical graph model of the torsional system, including
internal and external damping properties. Then, the formula for the frequency
response of each component can be derived directly according to the power-
¯ow graph model of the system and the topology synthesis. Based on the
method developed, the rotation response at the end of each shaft as well as the
internal rotation and internal torque response of the system can be e�ciently
calculated by computer due to the summation expression in the derived
formula. Since the derived formula is expressed in operation, it is very e�ective
to calculate by computer. Finally, some di�erent types of torsional systems are
investigated in the examples to illustrate the e�ectiveness of this method on the
vibration analysis of complex torsional systems.

# 1999 Academic Press

1. INTRODUCTION

The analysis of torsional vibration plays a crucial roll in the design of shaft and
rotor systems, which are widely used in the marine, aeronautical and mechanical
engineering ®elds [1±3]. One of the typical objectives for the analysis of torsional
vibration is to determine the internal torque and rotation response in each
segment of the shaft subject to a ¯uctuation in the power drive. For the lumped
model consdered, this problem can be formulated by using a set of coupled
differential equations, which can be solved simultaneously. The impedance
method was developed by analogy to the dynamics of the electrical impedance of
the system, but the method is also required to solve coupled series equations in
computing the Thevenin's equivalent voltage. Moreover, the transfer matrix
method was proposed for the analysis of the unidirectional shaft system by
numerical computation [4, 5]. However, it is dif®cult to use this method in the
analysis of complex multi-branch torsional systems, which are very commonly
used in practical applications. Based on the transfer matrix method, Munjal et
al. [6] developed a method and some subprograms for the calculation of the
velocity ratio using the analogous circuit model, but the processes are still
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complicated especially when used in multi-branch torsional system. Recently, a
power-¯ow model has been introduced for the transmissibility analysis of
isolation systems [7]. This model may be conveniently applied to the torsional
analysis for unidirectional systems but is very dif®cult to apply to multi-branch
systems due to the complexity of model construction for the total system.
In this paper, an alternative power-¯ow graph model is especially proposed for

the torsional analysis of a complex multi-branch torsional system. Moreover, a
modi®ed model is introduced for easy connection between the branched shaft
and main shaft. In order to express the formula in a standard form for a general
multi-branched system, a model reduction technology is used to reduce the
original complex model to a simple series connection type. Then the solution can
be written down directly from the con®guration of the system. Finally, some
examples are provided for different types of torsional systems. The frequency
responses of the internal torque and rotation angle of the systems are analyzed
to show the performance of this method.

2. ANALYSIS FOR UNIDIRECTIONAL SYSTEMS

A general case of the unidirectionally torsional system with shafts connected
in only one series is ®rstly considered as shown in Figure 1, in which the positive
torques and positive rotation angles are indicated on the positive face by arrows
pointing positively according to the right-hand screw rule. If a harmonic torque
acts on the left of the disk 0, the response of the internal torque and rotation
motion are all harmonic with the same frequency but having a different phase
with respect to the excitation. Using the exponential form, the dynamic
equations of the nth subsystem, including a massless shaft n and a lumped disk
n, may be expressed by

GGGn � �jbno� kn��YYYnÿ1 ÿYYYn�, YYYn � �1=ÿ Jno2 � jcno��GGGn ÿ GGGn�1�, �1, 2�
where Jn and cn are the polar moment of inertia and the rotating damping of the
disk n respectively, kn and bn are the torsional stiffness and the torsional
damping of the shaft n respectively; YYYn is the complex amplitude of the rotation
angle of the disk n; GGGn is the complex amplitude of the internal torque in the
shaft n. j is equal to (ÿ1)1/2. o is the excitation frequency. The absolute value
and the phase value of the complex amplitude correspond to the magnitude and
phase difference of the variable to the excitation torque. The relationship
between the variables of YYYn , YYYnÿ1 and GGGn in equation (1) can be described by a

Figure 1. Generalized unidirectionally torsional system.
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two-way power-¯ow graph model as shown in Figure 2(a). From the graph
model, one sees that YYYn and YYYnÿ1 are the input from the left- and right-sides of
the model individually and GGGn is the output from the left- and right-sides of the
graph model. In a similar way, equation (2) can be modelled as Figure 2(b), in
which GGGn and GGGn+1 are the input from the left- and right-sides, and YYYn is the
output from the left- and right-sides of the model. One also ®nds that the input
and output variables at the right-sides of Figure 2(a) match the output and input
variables at the left-sides of Figure 2(b). So Figures 2(a) and (b) can be
assembled to generate a combined power-¯ow graph model for the subsystem n,
in which the variables YYYnÿ1 and GGGn+1 are the input from the left- and right-sides
of the model, and GGGn and YYYn are the output from the left- and right-sides. In the
same way, the power-¯ow graph model of the total system can be generated as a
chain structure as shown in Figure 3, in which the variables In and Sn are de®ned
as

Sn � jbno� kn, In � ÿJno2 � jcno: �3, 4�
by comparing Figures 3 and 1, one sees that the structure of the power-¯ow
graph model is analogous to the physical model. The block Iÿ1n of the graph
model is analogous to the inertia and the rotating damping of the nth disk. The
block Sn is analogous to the stiffness and torsional damping of the nth shaft. 2M
¯ow loops are generated in the power-¯ow graph model of the total system.
Moreover, only two ¯ow loops pass through each shaft block Sn.
If the rotation angle YYYn is chosen as the output variable, only one forward

¯ow path exits from the input variable GGG0 to the output. Then, the complex

Figure 2. Power-¯ow model of the nth subsystem (a) for shaft n (b) for disk n.

Figure 3. Power-¯ow model of Figure 1.
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frequency function of the rotation angle can be calculated by the gain formula
[7].

HT0, yn � PT0, yn D2n�2=D1 �5�

where D1 is the determinant of the total graph model. PT0, yn is the path gain of
the forward path from GGG0 to YYYn. D2n+1 is the cofactor of the forward path.
Based on Figure 3, these parameters are given by

PT0, y0 � L1L3L5 � � �L2nÿ1Iÿ1n , �6�

D2n�2 � 1�
X2N

i�2n�2
Li �

X2N
i2�2n�4

Xi2ÿ2
i1�2n�2

Li2Li1 � � � �

�
X2N

iNÿnÿ1�2Nÿ2

XiNÿnÿ1ÿ2

iNÿnÿ2�2Nÿ4
� � �

Xi3ÿ2
i2�2n�4

Xi2ÿ2
i1�2n�2

LiNÿnÿ1LiNÿnÿ2 � � �Li2Li1 �
YN

i�n�1
L2i,

�7�

D1 � 1�
X2N
i�1

Li �
X2N
i2�3

Xi2ÿ2
i1�1

Li2Li1 � � � � �
X2N

iNÿ1�2N�3

XiNÿnÿ1ÿ2

iNÿ2�2Nÿ5
� � �
Xi3ÿ2
i2�3

Xi2ÿ2
i1�1

LiNÿ1LiNÿ2

� � �Li2Li1 �
X2N

iN�2Nÿ1

XiNÿnÿ2
iNÿ1�2Nÿ3

� � �
Xi3ÿ2
i2ÿ3

Xi2ÿ2
i1�1

LiNLiNÿ1 � � �Li2Li1 , �8�

where Li is the negative loop gain of loop i given by

Li � S�i�1�=2=I�iÿ1�=2 for i � 1, 3, 5, . . . , Li � Si=2=Ii=2 for i � 2, 4, 6, . . . :

�9, 10�

If the torque GGGn is chosen as the output variable, there is only one forward
¯ow path from GGG0 to GGGn. Then, the complex frequency function of each output
variable leads to

HT0,Tn
� PT0,Tn

D2n�1=D1, �11�

where

PT0,Tn
� L1 L3 L5 � � �L2nÿ1, �12�
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D2n�1 � 1�
X2N

i�2n�1
Li �

X2N
i2�2n�3

Xi2ÿ2
i1�2n�1

Li2Li1 � � � � �
X2N

iNÿnÿ1�2Nÿ3

XiNÿnÿ1ÿ2

iNÿnÿ2�2Nÿ5

� � �
Xi3ÿ2

i2�2n�3

Xi2ÿ2
i1�2n�1

LiNÿnÿ1LiNÿnÿ2 � � �Li2Li1 �
X2N

iNÿn�2Nÿ1

XiNÿnÿ2
iNÿnÿ1ÿ2Nÿ3

� � �
Xi3ÿ2

i2�2n�3

Xi2ÿ2
i1�2n�1

LiNÿnÿ1LiNÿnÿ2 � � �Li2Li1 : �13�

3. ANALYSIS FOR MULTI-BRANCH SYSTEMS

The general case of a torsional system with one main series of shaft and
one branch series of shaft as shown in Figure 4 is considered. If the two-way
power-¯ow model as shown in Figure 2 is directly applied to the analysis of
the branched system, it is dif®cult to connect the power-¯ow graph model of
the branched subsystem to that of the main system because the input and
output variables of both models with respect to the connected point are not
compatible. For this reason, the dyanmic equation of the connected element is
rewritten as

~GGGp, 0 � GGGp, 1 � Ip, 0YYYp, 0, �14�
where

Ip, 0 � ÿJp, 0o2 � jcp, 0o: �15�
YYYp, i and GGGp, i are the complex amplitude of the rotational angle of the disk p, i
and the internal torque on the shaft p, i respectively. ~GGGp, 0 is the complex
amplitude of the torque offered by the driven gear in the branched shaft. GGGp, 0 is
the complex amplitude of the torque acting on the driving gear of the main shaft
transferred from the driven gear p,0. If the gear ratio Rp is de®ned by the ratio

Figure 4. Generalized branched torsional system.
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of the number of teeth of the driving gear p to that of the driven gear p,0, the
relationship of the torque and rotation angle between both connected gears is
given as

YYYp, 0 � RpYYYp, GGGp, 0 � Rp
~GGGp, 0: �16, 17�

Moreover, the dynamic equation of the driving gear is given as

YYYp � �1=Ip��GGGp ÿ GGGp�1 ÿ GGGp, 0�: �18�
Substituting equation (14) into equation (18) leads to

YYYp � �1=Ip, c�GGGp ÿ GGGp�1 ÿ RpGGGp, 1��, Ip, c � Ip � R2
pIp, 0, �19, 20�

where Ip, c is the equivalent inertia of the combination of the driving and driven
gears. Based on equation (19), the power-¯ow graph model of the branched shaft
can be connected to that of the main shaft to obtain the graph model for the
total system as shown in Figure 5. Comparing Figures 5 and 4, one sees that the
structure of the power-¯ow graph model of the torsional system is also similar to
that of the physical system.

3.1. RESPONSE IN MAIN SHAFT

If the gain s directly applied to the calculation of the response for any internal
torque or rotational angle, the formulation becomes complex and irregular
especially for the system with many layers of branched series of shafts. A model
reduction technology is introduced as follows to simplify the power-¯ow graph
model of these complex systems to a standard structure. When the response of
the internal torque and rotation angle in the main shaft is the objective to
calculate, the transfer function from YYYp to GGGp, 0 can be combined into the block
(Ip,c)

ÿ1. The combined function of the branched shaft denoted by �I 0p�ÿ1 can be
calculated by the gain formula given by

I 0p � Ip, cDp, 1=Dp, 2, �21�

Figure 5. Power-¯ow model of Figure 4.
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where

Dp, 2 � 1�
X2Np

i�2
Lp, i �

X2Np

i2�4

Xi2ÿ2
i1�2

Lp, i2Lp, i1 � � � � �
X2Np

iNpÿ1�2Npÿ2

XiNpÿ1ÿ2

iNpÿ2�2Npÿ4

� � �
Xi3ÿ2
i2�4

Xi2ÿ2
i1�2

Lp, iNpÿnÿ1Lp, iNpÿnÿ2 � � �Lp, i2Lp, i1 �
YNp

i�1
Lp, 2i, �22�

Dp, 1 � 1�
X2Np

i�1
Lp, i �

X2Np

I2�3

Xi2ÿ2
i1�1

Lp, i2Lp, i1 � � � � �
X2Np

iNpÿ1�2Npÿ3

XiNpÿ1ÿ2

iNpÿ22Npÿ5

� � �
Xi3ÿ2
i2�3

Xi2ÿ2
i1�1

Lp, iNpÿ1Lp, iNpÿ2 � � �Lp, i2Lp, i1 �
X2Np

iNp�2Npÿ1

XiNpÿ2

iNpÿ1�2Npÿ3

� � �
Xi3ÿ2
i2�3

Xi2ÿ2
i1�1

Lp, iNp
Lp, iNp

� � �Lp, i2Lp, i1 �23�

where

Lp, 1 � R2
pSp, 1=Ip, c, Lp, i � Sp, i=2=Ip, i=2 for i � 2, 4, 6, . . . , �24, 25�

Lp, i � Sp, �i�1�=2=Ip, �iÿ1�=2 for i � 3, 5, . . . : �26�
Then, the complex frequency response of the internal torque or the rotational
angle in the main shaft can be calculated by equation (5) or (11), in which only
the item Ip replaced by I 0p is required. If there are subbranches of shafts
connected to the branch shaft, the power-¯ow graph model of the subbranches
of shafts can be reduced and combined into the graph model of the branch shaft
also using the model reduction scheme previously derived. Then the formula
expressed in equation (21) can be used for the model reduction for the branch
shaft, in which only the inertia functions for their connected disks are replaced
by the combined inertia functions. When more than one branch shaft is
connected to a disk of the main shaft, the model reduction work can be done in
sequence.

3.2. RESPONSE IN BRANCH SHAFT

When the analysis of the response of the internal torque and rotation angle in
the branch shaft is the objective, the power-¯ow graph model for the main shaft
after the connected disk can be combined into the connected block (Ip, c)

ÿ1

denoted by �I 0p, 0�ÿ1, which can be calculated by

I 0p, 0 � Ip, cD2p�1=D2p�2, �27�
where D2p+1 is the determinant of the power-¯ow graph model of the main shaft
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after disk p. D2p+2 is the cofactor of the path just passing (Ip,c)
ÿ1 in the graph

model with respect to the main shaft after disk p. Then the power-¯ow graph
model of the total system will become a structure of connected series very similar
to the unidirectional shaft system. Then, the response of the internal torque and
rotation angle in the branched shaft leads to

HT0,Tp, n
� PT0,Tp, n

Dp, 2n�1=D1, HT0, yp, n � PT0, yp, nDp, 2n�2=D1, �28, 29�

where

PT0,Tp, n
� L1 L3 L5 � � �L2pÿ1�RpSp, 1=I

0
p, 0�Lp, 3Lp, 5 � � �Lp, 2nÿ1, �30�

PT0, yp, n � L1 L3 L5 � � �L2pÿ1�RpSp, 1=I
0
p, 0�Lp, 3Lp, 5 � � �Lp, 2nÿ1Iÿ1p, n, �31�

Dp, 2n�1 � 1�
X2Np

i�2n�1
Lp, i �

X2Np

i2�2n�3

Xi2ÿ2
i1�2n�1

Lp, i2Lp, i1 � � � � �
X2Np

iNpÿn�2Npÿ1

XiNpÿnÿ2

iNpÿnÿ1�Npÿ3

� � �
Xi3ÿ2

I2�2n�3

Xi2ÿ2
i1�2n�1

Lp, iNpÿnLp, iNpÿn � � �Lp, i2Lp, i1 �32�

Dp, 2n�2 � 1�
X2Np

i�2n�2
Lp, i �

X2Np

i2�2n�4

Xi2ÿ2
i1�2n�2

Lp, i2Lp, i1 � � � � �
X2Np

iNpÿnÿ1�2Npÿ2

XiNpÿnÿ1ÿ2

iNpÿnÿ2�Npÿ4

� � �
Xi3ÿ2

I2�2n�4

Xi2ÿ2
i1�2n�2

Lp, iNpÿnÿ1Lp, iNpÿnÿ2 � � �Lp, i2Lp, i1 �
YNp

i�n�1
Lp, 2i: �33�

To simplify the expression of D1, the loop gain can be rede®ned as

L0i � Li for i � 1, 2, 3, . . . , 2p; L02p�1 � R2
pSp, 1=I

0
p, 0, �34, 35�

L02p�i � Lp, i for i � 2, 3, 4, . . . , 2Np: �36�

Then,



VIBRATION ANALYSIS OF TORSIONAL SYSTEMS 217

D1 � 1�
X2p�2Np

i�1
L0i �

X2p�2Np

I2�3

Xi2ÿ2
i1�1

L0i2L
0
i1
� � � � �

X2p�2Np

ip�Npÿ1�2p�2Nÿ3

XiNÿnÿ1ÿ2

ip�Npÿ2�2p�2Nÿ5

� � �
Xi3ÿ2
i2�3

Xi2ÿ2
i1�1

L0ip�Npÿ1
L0ip�Npÿ2

� � �L0i2L0i1 �
X2p�2Np

ip�Np�2�2Npÿ1

Xip�Npÿ2

ip�Npÿ1�2p�2Nÿ3

� � �
Xi3ÿ2
i2�3

Xi2ÿ2
i1�1

L0ip�Np
L0ip�Npÿ1

� � �L0i2L0i1 : �37�

4. EXAMPLES AND DISCUSSIONS

Two torsional systems as shown in Figures 6 and 7 are considered in the
analysis to illustrate the performance of the present method. The frequency
response of T3 and y4 with respect to input from T0 in Figure 6 are ®rst
calculated. From the derived formula shown in equations (5) and (11), the

Figure 7. Multi-branch torsional system.

Figure 6. Unidirectionally torsional system.
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complex frequency function of both responses can be expressed as

HT0, y4 � L1 L3 L5 L7=�ÿJ4o2�D1, HT0,T3
� �L1 L3 L5��1� L7 � L8�=D1,

�38, 39�

D1 � 1�
X8
i�1

Li �
X8
i2�3

Li2

Xi1�i2ÿ2
i1�1

Li1 �
X8
i3�5

Li3

Xi2�i3ÿ2
I2�3

Li2

Xi1�i2ÿ2
i1�1

Li1

�
X8
i4�7

Li4

Xi3�i4ÿ2
i3�5

Li3

Xi2�i3ÿ2
i2�3

Li2

Xi1�i2ÿ2
i1�1

Li1 , �40�

where

L1 � k1=�ÿJ0o2 � jc0o�, L2 � k1=ÿ J1o2, L3 � �jb2o� k2�=ÿ J1o2,

L4 � �jb2o� k2�=�ÿJ2o2 � jc2o�, L5 � k3=�ÿJ2o2 � jc2o�,
L6 � k3=�ÿJ3o2 � jc3o�, L7 � �jb4o� k4�=�ÿJ3o2 � jc3o�,
L8 � �jb4o� k4�=ÿ J4o2:

�41�

The multi-branch torsional system as shown in Figure 7 is considered in the
second example. If the frequency response of y1,2 with respect to the input from
T0 is computed, the part of the power-¯ow graph model with respect to the
branch from J1,1,0 to J1,1,2 and J2,0 to J2,2 can ®rst be reduced and combined into
the graph model of J1,1 and J2. Then the part of the graph model with respect to
J1 to J3 can be reduced. The reduced model for the analysis is shown in Figure 8.
From the method derived in this paper, we can write the complex frequency
function of y1,2 as

HT0, y1, 2 � L01 L
0
3 L
0
5=�ÿJ3o2�R1D1, �42�

where
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D1 � 1�
X6
i�1

L0i �
X6
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Xi1�i2ÿ2
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 !
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 ! !
,
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0
2,
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1,1J1,1,0�o2D1,1,1=D1,1,2,
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X4
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i2�3
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Xi1�i2ÿ2
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 !
,

D1,1,2 � 1�
X4
i�2

L1,1,i � L1,1,2L1,1,4, L1,1,1 � R2
1,1k1,1,1=ÿ �J1,1 � R2

1,1J1,1,0�o2,

L1,1,2 � k1,1,1=ÿ J1,1,1o2, L1,1,3 � �k1,1,2 � jb1,1,2o�=ÿ J1,1,1o2,

L1,1,4 � �k1,1,2 � jb1,1,2o�=�ÿJ1,1,2o2 � jc1,1,2o�, I 02 � ÿ�J2 � R2
2J2,0�o2D2,1=D2,2,

D2,1 � 1�
X4
i�1

L2,i �
X4
i2�3
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i1�1
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 !
, D2,2 � 1�

X4
i�2

L2,i � L2,2L2,4,

L2,1 � R2
1k2,1=ÿ �J2 � R2
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L2,3 � �k2,2 � jc2,2o�=ÿ J2,1o2, L2,4 � �k2,2 � jc2,2o�=ÿ J2,2o2: �43�

Figure 8. Reduced power-¯ow model for calculating HT0, y1,2 .
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5. CONCLUSIONS

An analytical method for the calculation of the dynamic response of internal
torque and rotary angle in unidirectional and multi-branch torsional systems has
been proposed. Using the proposed power-¯ow model, the torsional system can
be expressed as a two way graph model analogous to the con®guration of the
physical system, in which the internal damping for the shaft twist and external
damping for the rotational disk are all considered. Then the frequency response
of the internal torque and rotation angle in the shaft can be calculated directly
from the derived formula. Since the derived formula is expressed in summation
operation, it is very effective to calculate by computer. Although the graph
model for the multi-branch torsional system may be very complex, the model
reduction method presented in this paper can be applied to reduce this complex
model to a unidirectional strip model very similar to that of a unidirectionally
torsional system. Then the calculation work for the multi-branched torsional
system can be reduced to a standard and simpli®ed formula. Finally, the
frequency response of internal torque and rotary angle in the shaft of a
unidirectional and three shafts system are analyzed in the examples to show the
effectiveness of this scheme. By using this method, similar analysis can be
extended for more complex systems.
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